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the bottom line

eigenvalues of the Dirac operator know if chiral 
symmetry is spontaneously broken i.e. not conformal 

can measure eigenvalues via lattice simulations

revived interest in new gauge theories - is a given 
theory conformal or not?

non-perturbative question: lattice role



outline

• motivation for new gauge theories

• eigenvalues & chiral symmetry

• which theories to study?

• results to date

• outlook



motivation

(Walking) technicolor

(Sannino)

Fundamental: gray
2 antisym: blue
2 sym: red
adjoint: green

NF

Nc

Dietrich, Sannino

• origin of EW symmetry breaking - technicolor

• phenomenology - walking technicolor

• conformal theories - unparticles

• field theory challenge

representation, # colors, # flavors
conformal windows



eigenvalues & chiral symmetry

Dirac operator eigenvalue densityD ρ(λ)

Banks-Casher relation Σ = −〈Ψ̄Ψ〉 = lim
λ→0

lim
m→0

lim
V →∞

πρ(λ)

V

in finite volume, small eigenvalues closely packed

∆λ =
1

ρ(0)
=

π

ΣV

extract condensate from eigenvalue spacing? can do much better

if chiral SB: tune volume and quark mass 1

Fπ

! L !
1

mπ

crazy limit, theory dominated by finite-volume effects

ε -regimelighter than physical pion (Gasser, Leutwyler)



random matrix theory

Chiral perturbation theory dominated by zero-momentum mode

L =
F 2

π

4
Tr

(

∂µU∂µU†
)

+
1

2
Σ Tr

[

M(U + U†)
]

, U = exp

[

iπaT a

Fπ

]

distributions of lowest eigenvalues identical to those of different theory 

Zν(m1, ..., mNf
) =

∫

dWe−β Tr(W †W )

Nf
∏

i=1

Det

(

mi W

−W † mi

)

(N + ν) × N

matrix

random matrix theory (RMT): complete analytic control
ν topology

p1(z) =
1

2
ze−z2/4

(

I2(
√

z2 + µ2)

I0(µ)

)

Nf = 1, ν = 0example:

distribution 1st eigenvalue

rescale mass, eigenvalues: µ = mΣV, z = λΣV dimensionless



lattice example
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FIG. 7: Ratio of the eigenvalues 〈ζk〉/〈ζl〉 for combinations of k and l ∈ 1–4 (denoted in the plot

as k/l). We use the input, µ = 0.556(16), which is obtained from the lowest eigenvalue average.

In addition to the two-flavor QCD data (middle), quenched data at |Q| = 0 (left) and 2 (right)

at β = 2.37 are shown. Lattice data (circles) are compared with the ChRMT predictions (bars).

Note that the finite µ(∼ 0.56) corrections to the massless case are tiny.
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FIG. 8: The accumulated histogram of the eigenvalues. x-error comes from the statistical error

of Σ. The solid lines are the ChRMT results with an input for Σ from the average of the lowest

eigenvalue.

18

JLQCD, TWQCD (2007)

2 flavors, fundamental

chiral fermion simulations

integrated distributions
∫ z

0

pk(z′)dz′

fit Σ
〈λ1〉

m
=

〈z1〉

µ
via

lattice RMT

predict distributions

SU(3) color

expensive

very good agreement with RMT, as expected - theory non-conformal



candidate theories

SU(3) color

8,12 flavors, fundamental

2 flavors, 2-index symmetric

- compare with other lattice studies

- more realistic for phenomenology?

- cheap lattice simulations for

- see crossing into conformal window?

(walking, S parameter, # Goldstone bosons for W, Z)

NF = 4, 8, 12, 16, ...

- chiral fermion lattice simulation: very expensive



8 flavors, fundamental

consistent with Appelquist & co., Pallante & co.

improved staggered fermion
(Asqtad)

integrated distributions, k = 1,2

looks like chiral symmetry
spontaneously broken

theory looks non-conformal

∫ z

0

pk(z′)dz′
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good agreement with RMT



12 flavors, fundamental

not consistent with Appelquist & co.

same lattice action

again, good agreement with 
RMT, looks like chiral 
symmetry broken

theory looks non-conformal

this is a surprise

integrated distributions, k = 1,2
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2 flavors, 2 index symmetric

chiral fermion simulations - expensive small volume

fit condensate, predict
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Σ(5.100) = 0.080(4)
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simulations

no chiral SB, theory conformal? consistent with DeGrand, Svetitsky, Shamir

6
4

RMT

danger: physical volume too small? - force theory to be almost free 

SU(3) color



caveats
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Asqtad, HISQ, 
HYP+Asqtad, Stout

• Monte Carlo algorithm, quark mass, volume, statistics

• lattice artifacts: cheap method has flavor violations

• eigenvalue quartets form when flavor symmetry restored

• lesson: use further improved actions

various improved actions



outlook

• eigenvalue method complements beta function, 
spectrum of masses, finite temperature transitions,...

• hint that                          fundamental not conformal

• improved staggered action essential, ongoing

•                       2-index Symmetric looks conformal

• expensive 2S simulations at larger volume needed

• developing quickly, large computational resources

SU(3), NF = 8, 12

SU(3), NF = 2

NVIDIA graphics card
many talks at Lattice 2008



flavor breaking
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with RMT with smaller # flavors
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flavor breaking appears to be small
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8 flavor simulations



flavor breaking

flavor breaking also appears to 
be small for 12 flavor simulations

fit good

fit poor
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flavor breaking danger
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1 staggered flavor, fundamental

Damgaard et al (2000)

dynamical simulations

lowest 6 eigenvalue distributions

superb agreement
with              RMTNF = 1 NOT NF = 4

flavor symmetry badly broken - can only tune 1 pion to be light

want # light flavors same as in continuum theory - beware artifacts

SU(3) color



walking technicolor
walking technicolor

gauge theory asymptotically free - what if coupling runs slowly?Strong Electroweak Gauge Sector: running couplings

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 17/22

if beta function near zero, 
almost fixed point: 
near-conformal

can generate separation of scales
ameliorate FCNC’s
quark masses natural (Top?)

conformal models (“unparticles”) also getting popular

ΛTC,ΛETC

if coupling walks, separate scales
fix FCNC’s
light composite Higgs?

W,Z masses quark masses

techniquark fundamental rep.
need large NF

bad for EW precision



lattice fermions

add term to action, doublers infinitely heavy
break chiral symmetry explicitly

use only 1/4 of Dirac spinor components
4 flavors in continuum

Wilson

Staggered

flavor symmetry badly broken at finite lattice spacing
fractional power of determinant for e.g. 2 flavors

Chiral exact chiral symmetry on lattice
arbitrary number flavors possible
Dxy != 0 ∀ x, y lattice positions
Monte Carlo simulations much more difficult

(overlap)

(taste)



finite temperature eigenvalues
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Figure 12: A blowup of the graphs in Fig. 11. The microscopic spectrum changes smoothly from
Bessel-type behavior to Airy-type behavior, going through an intermediate “critical” distribution at
T = 1 corresponding to a macroscopic power-law behavior of type ρ(λ) ∼ λ1/3. The exact analytical
curve for the microscopic spectral density at T = 1 has been computed in Ref. [12].

of the Random Matrix spectral density at the soft edge of the gap. In this way, by blowing up the
scale of the smallest eigenvalues, we obtain the plots in Fig. 12 for the same parameter values of T as
above. One sees clearly how the universal Bessel-kernel behavior below Tc turns into the also universal
Airy-kernel above Tc. We note that it is has been shown in Ref. [14] that the massless microscopic
spectral density of the above Random Matrix model has precisely the usual zero-temperature form,

ρs(ζ(T )) =
ζ(T )

2

[

JNf
(ζ(T ))2 − JNf−1(ζ(T ))JNf +1(ζ(T ))

]

, (18)

where ζ(T ) is simply the eigenvalues rescaled by the (T-dependent) infinite-volume spectral density
at the origin ρ(0, T ):

ζ(T ) = λ2πNρ(0, T ) . (19)

In this model ρ(0) approaches zero with a mean-field type of behavior [14]:

ρ(0, T ) = ρ(0, 0)
√

1 − T 2 . (20)

For T bigger than Tc, but still close to it, we find, as expected, a deformation of the Airy-kernel.
In fact, the microscopic behavior there smoothly interpolates between the Bessel-form and the Airy-
form. The peaks corresponding to individual eigenvalues from the Bessel-function behavior below
Tc gradually smoothen out to become the inflection points in the spectral density of the Airy-kind
as the soft edge moves away from the origin. To illustrate how accurately one reproduces the Airy-
behavior in this kind of simulations, we show in Fig. 13 the soft edge prediction appropriately scaled
to fit simulation data at T=3. The Airy-behavior is perfectly reproduced close to the edge, but with
deviations after the first few eigenvalues(wiggles). The deviation is presumably caused by the limited
number of eigenvalues at N = 300, and when N is increased we expect the fit to improve.

17

pure Yang-Mills simulations

Damgaard et al (2000)

eigenvalue density smoothly changes as 
condensate vanishes at high T

eigenvalue density of
staggered Dirac operator


